Can unsupervised machine learning (UML) help in fraud detection?

Fraud is a „profitable“ business and it is increasing every year. Traditional techniques of fraud detection are complex, time-consuming and request domain knowledge like business practice, finance, economics, low etc. 
Well-designed applications have readable application logs, and well-described business processes in terms of data. Usually, we use all available in the development of a mathematical model that identifies anomalies in client/employee behavior
The presentation will show UML techniques such as path analysis and various types of segmentation that can help in detecting anomalies in a client/employee behavior.

Vladimir Markovic
BI Team Leader, Banca Intesa Beograd

Vladimir has comprehensive experience in DW/BI design and development primarily based on Microsoft and SAS BI platforms and products. This experience is further bolstered by years of working in implementation and development different kinds of DW/BI solutions and products.
During his work in the bank, he’s gained broad business background in different fields of BI application especially in analytical customer intelligence, credit risk scoring, credit risk portfolio management and accounting.
He is an experienced trainer and presenter. He enjoys sharing enthusiasm by presenting and promoting DW/BI at courses, user groups, technical events and conferences.
Vladimir holds a MSc in Math and Computer Science from Faculty of Mathematics, University of Belgrade . Areas of his interest are dimensional modeling and data mining. He plays chess in his free time.